Jump to content

Diagrammatic Monte Carlo

From Wikipedia, the free encyclopedia

In mathematical physics, the diagrammatic Monte Carlo method is based on stochastic summation of Feynman diagrams with controllable error bars.[1][2] It was developed by Boris Svistunov and Nikolay Prokof'ev. It was proposed as a generic approach to overcome the numerical sign problem that precludes simulations of many-body fermionic problems.[3] Diagrammatic Monte Carlo works in the thermodynamic limit, and its computational complexity does not scale exponentially with system or cluster volume.[4]

References

[edit]
  1. ^ Van Houcke, K.; Werner, F.; Kozik, E.; Prokof’ev, N.; Svistunov, B.; Ku, M. J. H.; Sommer, A. T.; Cheuk, L. W.; Schirotzek, A. (2012-03-18). "Feynman diagrams versus Fermi-gas Feynman emulator". Nature Physics. 8 (5): 366–370. arXiv:1110.3747. doi:10.1038/nphys2273. ISSN 1745-2473. S2CID 53412117.
  2. ^ Prokof’ev, Nikolay; Svistunov, Boris (2007-12-18). "Bold Diagrammatic Monte Carlo Technique: When the Sign Problem Is Welcome". Physical Review Letters. 99 (25): 250201. arXiv:cond-mat/0702555. doi:10.1103/PhysRevLett.99.250201. PMID 18233498. S2CID 42616665.
  3. ^ Rossi, R.; Prokof'ev, N.; Svistunov, B.; Van Houcke, K.; Werner, F. (2017-04-01). "Polynomial complexity despite the fermionic sign". EPL (Europhysics Letters). 118 (1): 10004. arXiv:1703.10141. doi:10.1209/0295-5075/118/10004. ISSN 0295-5075. S2CID 17929942.
  4. ^ Houcke, Kris Van; Kozik, Evgeny; Prokof'ev, N.; Svistunov, B. (2010). "Diagrammatic Monte Carlo". Physics Procedia. 6: 95–105. arXiv:0802.2923. doi:10.1016/j.phpro.2010.09.034. hdl:1854/LU-3234513. ISSN 1875-3892. S2CID 16490610.